Automation, electrification and micro mobility

The Insurance Implications

Research

1707ENF

EURO

SAFER CARS. FEWER CRASHES

EURC

17/06/21

VM Priorities

Vehicle Manufacturers looking at 3 main strategic priorities – Challenges for Insurers

Automated Assisted and Automated

Connected vehicles and Cyber Security

Connected

Electric Electric powertrains and lightweight structures

C

Ε

UK Government

International Regulation and Legislation

- > GSR Safer European vehicles
- > AEVA Enabling EV and Automation in the UK
- Road Traffic Act >

UK Policy

- > 10 point plan for a Green Industrial Revolution
- Taxation, incentives, investment >
- > Future Transport Plan
- Vision Zero reduce road deaths
- > Zenzic Road Map Whole ecosystem
- > Brexit Challenges and Opportunities

Building back better, supporting green jobs, and accelerating our path to net zero

200

November 2020

Assisted Automated Autonomous

Automation

>Consumer appetite and expectation?

Regulation vs Consumer Testing

Structure WP29 at UN ECE

World Forum for Harmonization of Vehicle Regulations

European Commission

Consumer Testing – A Market for Safety

Full-scale Crash Tests

Frontal Offset Deformable Mobile Barrier (Since 1997)

Frontal Full-width Rigid Barrier (Since 2015)

Side Mobile Deformable Barrier (Since 1997, updated 2015)

Side Pole (Since 2001, updated 2015)

Driver Assistance Systems

Confidential - Not for distribution

Euro NCAP Roadmap to Change

Euro NCAP 2025 Roadmap IN PURSUIT OF VISION ZERO \bigcirc

Testing Automation Development of Assisted Driving grading tests

Automated Driving Technology

Mercedes S Class (W221) Level 3 Automated Driving in 2021

Automated Lane Keeping Systems

> ALKS first L3 system 2021

- > Automated Driving is seen as a key part of UK Transport Strategy and will be instrumental in reducing emissions, congestion and road casualties.
- > UK Insurers support the adoption of **Safe Automation** and have been keen advocates of the **AEVA**
- > The adoption of Automated Driving will follow type approval work at the **UN ECE**
- > DFT issued a request-for-comment to understand safety implications although they are on record as saying "*The UK will be first to allow automated driving.....*
- > Legal to use in the UK by end 2021?

There are more than 28 million connected vehicles on global roads and a major cyber-attack could happen tomorrow

Risk Landscape

Vehicle

- > Complexity: chips network architecture
- > Inputs: plug-in wireless remote

Vehicle Manufacturer

- > Backend: OTA updates data exchange control
- > Corporate: IT system response supply chain

Increased scope & complexity of risk, but feasible

3rd Party CAV Network

- Service insurer entertainment V2V V2X
- > Infrastructure: mobile network servers hardware

Dynamic Risk

- > Threat actors: terrorism hacktivists errors
- > Software updates emerging vulnerabilities

Risk visibility, assessment & control beyond existing motor insurance framework

THATCHAM RESEARCH CONFIDENTIAL © 2020

Collision avoidance testing

e-scooter target

Nearside testing – Tesla

Ford Focus – typically representative

Tesla Model 3 – high performer

eScooter collision frequency estimate

> Comparison of UK and French national stats – micro-mobility categorised in France in 2019

> Of the 632 cases, about 1/4 are single vehicle micro-mobility collisions

			Vehicle type A									
Vahida tura P	U	К	France									
Vehicle type B	Pedal	cycle	Peda	l cycle	ED	РМ	EDP					
	Qty	%	Qty	%	Qty	%	Qty	%				
Car + Taxi/Private hire car	11205	84.8%	2526	74.5%	319	70.9%	90	75.6%				
Van / Goods Vehicle	1050	8.0%	286	8.4%	42	9.3%	10	8.4%				
Bus/coach	228	1.7%	55	1.6%	12	2.7%	5	4.2%				
Pedal Cycle	81	0.6%	77	2.3%	22	4.9%	1	0.8%				
EDPM	N.A.	N.A.	22	0.6%	3	0.7%	0	0.0%				
EDP	N.A.	N.A.	1	0.0%	0	0.0%	0	0.0%				
All other	642	4.9%	432	12.7%	53	11.8%	14	11.8%				
Sum	13206	100%	3399	100%	451	100%	120	100%				

- EDPM motorised micro-mobility personal vehicle (including e-scooters)
- EDP non-motorised micro-mobility personal vehicle
- > Pedal cycle proxy e-scooter vehicle

- > About 80% of micro-mobility personal vehicle collisions occurred versus car vehicle type
- > Assuming **similar operating conditions** of micro-mobility personal vehicle exist between UK and France
- > Based on the French car to pedal cycle/EDPM collision ratio, extrapolate 1,418 e-scooter-like vehicle collisions versus 13,206 pedal cycle collisions in the UK in 2019

Testing results

CENA

- Tesla good 15km/h e-scooter performance, except low speed
- Tesla limited performance against 20 km/h e-scooter
- Ford no performance against 15km/h e-scoter
- Ford moderate performance against 10 km/h e-scooter only

CENAO

- Tesla moderate performance against 10km/h e-scooter only
- Ford no performance against either speed e-scooter

to-Bicyclist Nearside Adult	t Obstructed
J = 4, I = 3.55 m	
K B B	Aver A - Trajectory of bicyclist target crank shaft BB - Asis of centreline of Vehicle under Test Distance G - Bicyclist target crank shaft, steady state distance (not within Field of view of VUT) H - Bicyclist target crank shaft, steady state distance to 50%-impact Distance of bicyclist path to obstruction J - Distance of bicyclist path to obstruction K - Thickness of obstruction L - Length of obstruction Binest M - Impact position for 50% nearside scenarios

	Car-to-e-scooter Nearside Adult (CENA) Vehicle Speed (km/h)												
Model	Target S	peed	10	15	20	25	30	35	40	45	50	55	60
Tesla	15km/h	\$											
	15km/h	L											
	20km/h	1											
Ford	15km/h	\$											
	15km/h	2											
	20km/h	L											
	10km/h	1											

	Car-to-e-scooter Nearside Adult Obstructed (CENAO)												
	Vehicle Speed (km/h)												
Model	Target Sp	beed	10	15	20	25	30	35	40	45	50	55	60
Tesla	10km/h	2											
	20km/h	1											
Ford	10km/h	1											
	20km/h	1											

No Braking Some Braking Avoid

New EV's

Electrification

- > UK Government Electrification target brought forward
- > 2030 new vehicles 100% BEV and HEV
- > 2035 new vehicles 100% BEV only
- > Electric new Car registrations under 5% in 2020
- > Take-up influenced by financial incentives
- > Repair costs will be on average higher
- > Repair process unclear
- > Will stabilise as EV's become common place

Thatcham Research Projections 2021 based on Government strategy and New vehicle registrations

Electric Platform Technology

Conclusions

> ACE – Automated Connected and Electric – the future

- Government environmental pledges Kyoto, Paris and economic benefits – the Green economy set the pace of change
- > Assisted technology with us today
- > Automated with us later in 2021
- > Technology requires human oversight to be safe
- > eScooters adoption encouraged
- > Most ADAS systems cannot recognise
- > EV's to become common place but more expensive to repair
- New cyber threats mean policy wording should be checked
- > The future is ACE

J Thank you

